Atti del XVI Convegno SIA
Società Italiana di Archeoastronomia

DIPARTIMENTO DI MATEMATICA
POLITECNICO DI MILANO
3-4 NOVEMBRE 2016

Quis dubitet hominem coniungere caelo?

a cura di
Elio Antonello
INDICE

Presentazione p. 1

Elio Antonello,
Astronomia, paleoclimatologia ed evoluzione umana 3

Simone Bartolini, Federico Di Gesualdo,
Solar and cosmological symbolism and astronomical orientations of Romanesque churches in Tuscany 31

Massimo Calabresi, Paola Refice,
Lettura astronomica del cielo dipinto nel sogno di Costantino di Piero della Francesca 47

Maurizio Chirri, Michele Ceddia, Isabella Ercoles, Giorgio Manzi,
Differenze dei gradi iniziatici e delle corrispondenti influenze planetarie, nei mitrei di Santa Prisca in Roma e del Felicissimo in Ostia 57

Mario Codebò, Athanasios Fourlis,
Sirius was already white 69

Paolo Colona,
The astronomical origin of numbers’ symbolism 79

Marta Conventi, Henry De Santis,
Misurare la terra secondo il cielo: il caso di Albingaunum 97

Annamaria Dallaporta, Lucio Marcato,
A proposito della cometa di Akbar 107

Giangiacomo Gandolfi,
Gli emisferi celesti della Sagrestia Vecchia a San Lorenzo e della Cappella dei Pazzi a Santa Croce: una rivalutazione astrologica. Parte I 121
Nicoletta Lanciano,

Lettura critica dei metodi di Eratostene e Posidonio per stimare il meridiano terrestre, nell’opera di Cleomede 149

Silvia Motta, Adriano Gaspani,

An archaeoastronomical investigation on the Templar churches built in Piedmont, in the North West of Italy 165

Andrea Orlando, Carlo Veca,

Gli orientamenti delle tombe a pozzetto della necropoli protostorica di Thapsos (Siracusa): analisi preliminare 177

Andrea Orlando, Orazio Palio e Maria Turco

Analisi archeoastronomica della spirale megalitica di Balze Soprane (Bronte, CT) nell’area nord-occidentale dell’Etna 191

Guido Rosada,

Ut ad orientem spectet 205

Alberto Scuderi, Vito Francesco Polcaro,

New evidences of solstice alignments of prehistoric sites in Western Sicily 229

Eva Spinazzè,

Baptisteries and baptismal fonts: interpretation of the orientation of Early Christian and medieval baptisteries in Friuli (North-East of Italy). The case of Aquileia 239

Angela Maria Zavaglia,

Il complesso rupestre della “Madonna della Stella” di Gravina in Puglia. Ipotesi sui riferimenti archeoastronomici nei rituali dei culti precristiani 267
Sirius was already white

Mario Codebò1, Athanasios Fourlis2

1www.archaeoastronomy.it, archeoastronomialigustica@gmail.com
2fourlisath@gmail.com

Abstract. Commonly, the adjective υπόκιρρος, that Ptolemy used for only six different stars in his Almagest and for only three stars in his Tetrabiblos, is translated “reddish”. Since these stars have very different colours at the present, modern astronomers felt to be compelled to try to explain why, according to Ptolemy, Sirius should have been “reddish” instead of white (as it really is), and they presented several hypotheses. Here we propose: 1) a “strong” hypothesis that the adjective υπόκιρρος means “yellowish”; 2) a “weak” hypothesis that υπόκιρρος means “iridescent”; 3) the witness written in the Avestā, the holy book of the Zoroastrian religion, that the colour of Sirius before Ptolemy was white.

1. Introduction
In the Star Catalogue of his Μαθηματική Σύνταξις, commonly known as The Almagest, Ptolemy describes 1022 stars from first to sixth magnitude, but only for six of them he uses an adjective – υπόκιρρος – that always had been translated as “reddish”. The six stars are: Aldebaran (spectral class K5), Antares (spectral class M1), Betelgeuse (spectral class M2), Arcturus (spectral class K1), Pollux (spectral class K0), Sirius (spectral class A1). For human eyes two of these stars – Antares and Betelgeuse – seems to be red; two – Aldebaran and Arcturus – seems to be orange; one – Pollux – seems to be yellow and the last one – Sirius – seems to be white.

In his book Τῶν πρὸς Σύρον ἀποτελεσματικῶν τέσσαρα βιβλία, commonly known as The Tetrabiblos (Feraboli 1982, pp. 42, 44, 48), Ptolemy uses the same adjective υπόκιρρος only for three stars: Aldebaran (named here λαμπαύρας = bright), Antares and Arcturus; he does not use any adjective for Betelgeuse, Pollux and Sirius. This opens three questions:
1) What is the exact meaning of the adjective υπόκιρρος?
2) Why Ptolemy used an adjective only for six out of 1022 stars in his
Almagest Star Catalogue (Heiberg 1903; Toomer 1998)?
3) Why did he use the same adjective for so differently coloured stars?

2. Schiaparelli’s hypotheses
The common translation of ύπόκιρρος into reddish pushed astronomers to try to explain how it is possible that a reddish star changed its colour into white in a time span less than one millennium, because the Muslim astronomer Al Sufi describes Sirius as a white star in the 10th century AD (Ferreri 2015, p. 40).

Because Sirius is a double star, a modern hypothesis tries to explain the change of colour as the transformation of Sirius B, previously giant and red, into the present white dwarf star (Ferreri 2015, pp. 40 – 42). But this hypothesis is not very convincing.

The Italian astronomer Giovanni Virginio Schiaparelli wrote, respectively in 1896 and in 1897, the two important reports Rubra Canicula. Considerazioni sulla mutazione di colore che si dice avvenuta in Sirio and Rubra Canicula. Nuove considerazioni sulla mutazione di colore che si dice avvenuta in Sirio (De Meis, Gnoli, Panaino 1998, pp. 179 – 234), by supposing that the change of colour was only a translation mistake since the Roman Age. He supposed, with convincing arguments, that the Latin translation “Rubra Canicula” – i.e. the “little female reddish dog” – is related not to Sirius but to the red star Procyon in Canis Minor constellation, that rises some days before Canis Major. Indeed Schiaparelli describes the ancient Greek myth of Icarius, of his daughter Erigones and of their little female dog Maira who were all changed in heavenly constellations (respectively: Bootes, Virgo and Procyon or Canis Minor) by the Olympians Gods. He describes also an ancient Latin sacrifice – the Robigalia – on occasion in which, every 25th April, Romans sacrificed a little red female dog to Robigo, the goddes of the rust. Schiaparelli infers that Rubra Canicula, Maira, the Robigalia and Procyon had the same meaning and that Romans mistook the red star Procyon for Sirius.

3. Etymological discussion
We think that this confusion between Procyon Rubra Canicula and Sirius ύπόκιρρος led wrongly to translate this adjective as reddish. But ύπόκιρρος does not mean reddish!
3.1. The meaning of κιρρός

According to the dictionaries Gemoll (1936)7 and Rocci (1948), the meanings for ύπόκιρρος, κιρρός and their compounds are the following:

a) κίρρος or κιρρός = pale, yellow;
b) ύπόκιρρος = yellowish;
c) κιρράς = yellow;
d) κιρροειδής = yellowish; pale;
e) κιρροκοιλάδια = figs with yellow pulp;
f) κιρρώδης = yellowish.

The adjective κιρρός gives in modern languages the medical word “cirrhosis”, because the liver becomes yellow owing to the adipose (or fat) infiltration: κιρρωσίς = κιρρός (yellowish) and -ωσίς (condition). Basically, the ancient authors used these adjectives meaning yellow or white. For instance, Hippocrates wrote ύπόκιρρος οίνος, means “white wine”. Therefore, ύπόκιρρος does not mean a dark colour, as reddish, but, rather, a very clear colour as yellowish or whitish, that is the current colour of Sirius. Note that, in ancient Greek, σείριος means “hot”, “burning”. Eratosthenes, in his work Καταστερισμοί (Westermann 1843), wrote “Seirios on the head [or tongue]. This star is large and very bright (λαμπρόν1) and the stars similar to it are named Seirioi by astronomers because of the movement of the flame”. The movement of the flame is important! So the very true question is: why Ptolemy used an adjective that means “yellowish or whitish”, not “reddish”, for red stars such as Antares, Betelgeuse and for orange stars such as Aldebaran and Arcturus2?

In ancient Greek grammar ύπόκιρρος is a compound word (ύπο + κιρρός), but the word ύπο is a preposition (Latin: ipo-; English hypo- = sub, under, down, below) which placed before the adjectives decreases their characteristics (downgrading the original word): for example: υποαλλεργικό (=hypoallergenic), υποθερμία (=hypothermia). This fact alone is enough to cancel the “red–theory” even if some researchers wrongly translate the adjective κιρρός as “red”, influenced by the Latin “ruber, rubra, rubrum”.

1 λαμπρόν is the adjective more often used in the catalogue of the stars in the Almagest.

2 For the yellow star Pollux, ύπόκιρρος may be fitted.
3.2. Κιρνάω, κεραννύω, κεράω, κεράννυμι

Another fact is that κιρρός may have the same root of κιρνάω, κεραννύω, κεράω, κεράννυμι, meaning basically “to mix”, signifying the mixing and consequently the “change” (of colour, consistency, etc.). Indeed, these verbs were used (for instance in Homer) to signify the mixing of the wine with the water. But when the dark wine is mixed with water its colour changes, becoming more clear or “pale” (i.e. κιρρός). In other words, the colour κιρρός may derive its meaning “yellow, pale” from the change of the colour of dark wine mixed with water.

3.3. The colours in the antiquity

It seems that in ancient languages the colours did not exist in the abstract sense as in modern ones\(^3\), but the colours were derived from material objects having that colour (for instance: the red of the fire; the blue of the sky; etc. and the “bleaching” of the dark wine mixed with water)\(^4\).

When Greek words were taken into Latin, the letter “Κ” was transliterated as a “C”. Loanwords from other alphabets with the sound /K/ were also transliterated with C. Hence, the Romance languages generally use C and have K only in later loanwords from other language groups. The Celtic languages also tended to use C instead of K, and this influence carried over into Old English (https://en.wikipedia.org/wiki/K).

Let’s see now some examples about the preposition ὑπό from the book written by Pedanius Dioscorides, De Materia Medica (ΠΕΔΑΝΙΟΥ ΔΙΟΣΚΟΥΡΙΔΟΥ ΑΝΑΖΑΡΒΕΩΣ, Περὶ ὡλης ἰατρικῆς) (Wellmann 1906). We can see how this preposition can transform (“decrease” in this case) the adjective/colour but we can also understand the colours through the eyes of ancient people, as a comparison of ancient and modern colours in the same object:

a) Wax <κηρός> = υπόκιρρος = subpale [Vol II, 83]\(^5\)
b) Sea daffodil bulb (Pancratium Maritimum) <παγκράτιον> = υπόπυρρος (reddish, sub+color of the fire, pyrros)[Vol II, 172]
c) Honey <μέλι> = υπόξανθον (sub+color of blond hair, blond = xanthos)

\(^3\) Probably only the difference between brightness and darkness.

\(^4\) Personal communication to us by prof. Mario Caprini and prof. Rita Caprini.

\(^5\) The numbers between square brackets are referred to the volumes, chapters and lines of Dioscorides’s book.
[Vol II, 82]
d) Anemone (for the white species) <ἀνεμώνη> = ὑπόλευκα (sub+white, whitish, white = lefkos) [Vol II, 176]
f) Thlaspi Arvense <θλάσπι> = ὑπόλευκον (sub+white, whitish, white = lefkos) [Vol II, 156]
An other example (Ulrichs 1843): albōginus, a, um = ὑπόλευκος, κιρρός (6)
(= whitish, kirros). Other synonyms for ὑπόλευκος are: ivory, pale, pallid, creamy-white, broken-white, off-white.

3.4. The root *κιρ/*κηρ and the Linear B
An additional hypothesis is that some words derived from the same root and widespread in several cultures are related. The word <kera> (κέρας), the root of which may be *κιρ/*κηρ, is already present in the Linear B until today. Its meaning is “horn”. Some derivatives words are: Ceratophyllum, rhinoceros, keratin, cheratina, cranium, cranio (skull), cranosn (helmet). Common-root in Linear B is: <ka-ra-pi>, cara (cerebrum, head). But the same root you can actually find in the modern and ancient Greek adjective κιρρός = “pale”, that Macedonians pronounce κερρός, with an e = e instead of an i = i (Hoffmann 1906). Here we have the same meaning with two different pronunciations! Moreover, the colour of the horn is generally a kind of lighter or darker “yellow”: i.e. “pale”. The same root *κιρ/*κηρ may also appear in some words meaning baked clay, pottery, the colour of which is generally “pale”.

These examples proof again, that the original meaning of the adjective ὑπόκιρρος is not reddish but “yellowish”, “whitish”, at least “pale”.

4. Avestā’s and other witnesses
Regarding the colour of Sirius, we have a witness prior to Ptolemy that describes it as a white star: in the Avestā (Alberti 2008, pp. 320 – 329), the holy book of the Zoroastrian religion, the Yašt Tīr n. 8 is devoted to the star Tištria, that is the yazata (i.e. roughly the angel) of the star Sirius. The Yašts are thirty hymns, one for each day of the months, devoted to the “yazata”. Some of them precede the Zarathuštra’s religious reform (about 9th century BC or before). They were composed during the 1st millennium

6 Note that the Latin adjective albus, -a, -um means “white”. This is another proof that κιρρός – and even more so ὑπόκιρρος – does not mean “reddish” but “whitish.
BC, i.e. before the Ptolemy’s Almagest. Yašt Tīr n. 8, vers No. 2, sings:
“We offer up libations unto Tištrya, the bright and glorious star, that gives
happy dwelling and good dwelling; the white⁷, shining seen afar, and
piercing; the health-bringing, loud-snorting, and high, piercing from afar
with its shining, underfiled [immaculate]⁸ rays, and unto the waters of the
wide sea, the Vanguhi of wide renown, and the species of the Bull, made
by Mazda, the awful kingly Glory, and the Fravashi of the holy Spitama
Zarathushtra”⁹.

Moreover, some extant ancient chinese texts – from 100 B.C. to 646
A.D., i.e. about contemporary to Ptolemy – also report that the colour of
Sirius was absolutely white, as Vega. (Jiang Xiao-Yuan 1993): 1) Shiji
Tianguanshu (Historical Records, Book of asterisms) written by Sim Qian
in 100 B.C. 2) Hanshu Tianwenzhi (History of Hall, Astronomical
Chapter) written by Ban Gu, Ban Chao and Ma Xu in 100 A.D. 3) Jinzhou
Zhan (Jinzhou Book of Prognostication) written by Liu Biao in 200 A.D.
4) Hanshu Tianwenzhi zhong (History of Jin, Astronomical Chapter, Book
2 of 3), written by Li Chun-Feng in 646 A.D.

Note that Vega is mentioned in the Avestā too: the short Yašt 20 is
fully devoted to Vanant, that is probably the star Vega (α Lyrae), named
the “star of the rains”. Vanant is mentioned in the Yašt 8,12 too, with
Tištrya (Sirius, that is named here “the first star”) and the stars
Haptōiringa, that seem to be the stars of the Ursa Major (the Great Bear or
the Plough). Here is the full verse 12 of the Yašt 8, according to
www.avesta.org: “We sacrifice unto Tishtrya; We sacrifice unto the rains
of Tištrya. We sacrifice unto the first star; we sacrifice unto the rains of
the first star. I will sacrifice unto the stars Haptoiringa, to oppose the Yatus
and Pairikas. We sacrifice unto Vanant, the star made by Mazda; for the
well-shapen strength, for the Victory, made by Ahura, for the crushing
Ascendant, for the destruction of what distresses us, for the destruction of
what persecutes us. We sacrifice unto Tishtrya, whose eye – sight is
sound”.

Also Schiaparelli, in his article of 1896 (De Meis, Gnoli, Panaino 1998,
pp. 205 – 209), listed and discussed the ancient authors who described
Sirius as a white star or, at least, not as a reddish one: Julius Iginus; the

⁷ The underlining is ours.
⁸ The underlining is ours.
scholiast of Aratus; Manilius; Rufus Festus; Hefestio of Thebes (in Egypt). The last of them, particularly, described four colours (big and white; gold; red; little and pale) and four qualities (big and bright; dull; little and dim; dark10) that Sirius could show during its heliacal rising11, heralding the Nile’s floods. This mutability of Sirius, due to the atmospheric refraction, is in agreement with our “translation” of the adjective ύποκιρρος as “iridescent”. In Table 1 are listed height and time UT of Sirius’ culmination, calculated by FK5 J2000.012 at the dates of 1st January 150 AD (the approximate year in which Ptolemy wrote his Almagest), 141 BC (the approximate year in which Hypsarchus wrote his Stars’ Catalogue) and 290 BC (the year in which Timocaros and Aristillus wrote their Star Catalogue):

<table>
<thead>
<tr>
<th>Date</th>
<th>Height</th>
<th>UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 AD</td>
<td>42°55’</td>
<td>20:43</td>
</tr>
<tr>
<td>141 BC</td>
<td>42°43’</td>
<td>20:40</td>
</tr>
<tr>
<td>290 BC</td>
<td>42°34’</td>
<td>20:37</td>
</tr>
</tbody>
</table>

5. Conclusions

Κιρρός does not mean reddish but yellow and therefore, ύποκιρρος (or ύποκιρρός) means “less than yellow”, which is the true colour of Sirius. But the question is: as this adjective does not fit on to the other four “reddish” stars Aldebaran, Antares, Betelgeuse, Arcturus, as listed by Ptolemy, why Ptolemy used the same adjective for so different and only six stars, while he named 1022 stars, for which he used only the adjective λαμπρός = bright?

Since the verbs κιρνάω, κεραννύω, κεράω, κεράννυμι (that may have a common root *κιρ/κηρ) mean “to mix”, because these verbs are used by ancient authors to express the action of the mixing of wine and water – in consequence of which the red wine change its colour and becomes more

10 μέγας καὶ λαμπρός; μέλας; μικρός καὶ στυγνός; σκοτεινός.
11 For astrologers who had to foresee the discharge of the Nile’s flood.
12 Integrated by Agostino Frosini in his JavaScript software Effemeridi VSOP87 using the algorithms printed in Meeus 2005, chapters 21, 22, 23, 32, appendix III, and Meeus 2014, chapters 12, 13, 14, 22, 35. Effemeridi VSOP87 can be downloaded from http://www.agopax.it/Archaeoastronomy%20Program/pagina_iniziale.html

75
pale – we suggest the hypothesis that ὑπόκιρρος meant in Almagest the quick change of colour of these six bright stars, i.e. their iridescence. This is only a proposal of course, a work hypothesis without proofs, not a certainty! On the other side, our purpose in this article is not to search for the true meaning of the adjective ὑπόκιρρος but to check if it means reddish, as commonly translated, and consequently if Sirius was once truly reddish and changed its colour in less than one millennium. We think, with adequate certainty, that we proved here that it does not mean reddish\(^\text{13}\). Moreover, we found the new, unpublished witness of Avestā, supported by Chinese witnesses and by the authors listed by Schiaparelli nearly contemporary of Ptolemy, which demonstrates that Sirius, at the age of Ptolemy, was white.

Acknowledgements

Claudio Bevegni, Ancient Greek, University of Genova, Italy; Mario Caprini, Literature, High School teacher, Italy; Rita Caprini, Glottology, University of Genova, Italy; Walter Ferreri, Astronomer, INAF – Osservatorio Astronomico di Torino, Italy; Agostino Frosini, ship commander; Maria Giannikou, Philology, School consultant of philologists, University of Ioannina, Greece; Stelios Kaouris, Philology, Aristotle University of Thessaloniki; Konstantinos Kottis, Theology, Graduate Student, Aristotle University of Thessaloniki, Greece; Alexandra Schmitz, Academy of Fine Arts of Florence.

Bibliography

Feraboli S. editor (1989\(^3\)) Claudio Tolomeo. Le previsioni astrologiche (Tetrabiblos), Fondazione Lorenzo Valla/A. Mondadori, Milano, Italy.
Gemoll G. (1936\(^7\)) Vocabolario Greco – Italiano ad uso delle scuole, Edizioni Remo Sandron, Palermo – Milano, Italy.
Heiberg J.L. (1903) Syntaxis Mathematica, Lipsia, Germany.

\(^{13}\) There are not yet enough data to state with certainty what Ptolemy wanted to signify with ὑπόκιρρος.

Westermann A. (1843) *Mythographoi. Scriptores poéticæ historiæ Græci*, Braunshweig (Brunsvigae), Germany.